PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000

Parametric instabilities of intense lasers from interaction with relativistic hot plasmas
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The stimulated Raman scatteri@§RS and relativistic modulational instabilittRMI) of intense lasers in
relativistic hot plasmas are studied, using the waterbag distribution in momentum space. Two cases are
considered: a single hot electron distribution and a cold plasma attached with a hot electron tail. It is shown
that both high temperatures and hot electron tails can significantly reduce the instability growth rates, shift the
unstable regions in the wave-vector space, and change the Raman scattering frequency spectra from the cold
plasma theory. In particular, at low-light intensities, there exists a cutoff thermal velocity beyond which SRS
is completely suppressed. At high-light intensities, no clear cutoff thermal velocity is found owing to the
merging of SRS with RMI.

PACS numbgs): 52.40.Nk, 52.35.Mw, 52.68:h, 52.65.Rr

[. INTRODUCTION cavitation by the ponderomotive force in the transverse di-
rection[16]. In view of these observations, a new theory on
Recently there has been considerable interest in paramdarametric instabilities is necessary to account for the effects
fic instabilities in plasmas in the regime where the driving©f the drift motion and the high temperatures of electrons.
lasers are at relativistic high intensities(10'8 Wi/crr?), The drift motion and high temperatures can significantly
now available owing to recent advance in the laser technolghange t.he. grovv.th' rates and the frequency spectra (.)f the
ogy. With these kinds of lasers normally having a durationparametrlc instabilities, and as a result, affect the behavior of
less than 1 ps, the electron parametric instabilities are morjasfzr %l#]se p_rr?qpagat!{og mqund;zrdegsg dplaimaoaeﬁ"%'}g in
important than those concerned with ion motion. In compari- oo ISt' N Fl)” gry Eu {ﬁ and a one- m;ﬂr:sy a{ bilit
son with earlier theories for relatively low-light intensities S'm#. ah'?n areaty SE?W € Suppression ot the instabiliies
[1,2], new features of the electron parametric instabilities aré’y Igh temperatureo.

found in the relativistic intensity regime. They are character-t ]n tf}ngSaper, dw;ahstud?/ tl:_)o_tr;' the sglmlultgtelean:aB_licat—
ized by the broadening of unstable regions in the wave veco'Ng (SRS an € relatvistic modutational instabiiity
RMI) of intense lasers in plasma with either high electron

tor space and merging of the unstable regions of differen% ¢ drifii locities. thereb tend .
instabilities, high temporal growth rate up to a fraction of the emperatures or dritting velociies, thereby extend previous

laser frequency, spatial-temporal behavior due to the Shoﬁne-dmensmnal theories on relativistic parametric instabili-

pulse duration, strong harmonics generation, and new instdSS |_n_c9Id plasmag3—5]. One of the main points is that a
bility excitation, such as the relativistic modulational/ relativistic waterbag model in electron momentum space is

filamentation instability, etd3—11]. In most of these works, adopted, which allows for considerable simplification of the

plasma electrons are assumed to be cold without drift molinal dispersion relation. One can even use several Heaviside

tion. However, now there is growing evidence showing thatmn(:tio.nS to approximate the real .distri_bution_ includin_g pos-
X sible high-energy tails. The resulting dispersion relation is a

this assumption is generally not satisfied in laser-plasma in olvnomial. which can be solved numerically. The outline of
teraction involving relativistic intense lasers. poly N lly. 1h .
this paper is as follows. In Sec. Il, a one-dimensional disper-

Partially motivated by the concept of the fast ignitag], . . ) S
considerable studies, either with particle-in-o@IC) codes sion relation valid for relativistic high-electron temperatures
' is described. In Sec. Ill, a symmetric waterbag distribution

[13-18 or in experiment§19-2, are devoted to the issues bout zero momentum is used to study the dependence of

of propagation of short pulse intense lasers in underdens, .
plasma and hole boring through overdense plasma. One RS and RMI on electron temperatures and plasma deﬂs'“es-
or the relevance to the fast ignitor simulations mentioned

the main pictures is that a large amount of electrons ar . .
accelerated to very high energy by lasers together with indbove, in Sec. IV, SRS and RMI are studied for electrons

duced electric and magnetic fields in plasma. These electrorﬂéeslirt'ngcdr.t\;\g;hbtwt%:gf;g?t rf:?opnezr;tnué?s’maorzﬂgt Cﬁ]n;%%_a
form current jets moving in the forward direction inside the : y unct z u

self-focusing channels or individual filaments of the light "Ottail component with- momenta extending from zero to

beams. Meanwhile return currents flow in the opposite direcSOMe high momentum. A summary and discussions of the
tion in the surrounding regions. Such electron current pipe£eSUItS are given in Sec. V.

are accompanied by the self-focusing of the laser beams, the Il. DISPERSION RELATION

self pinching of the inner currents or current jets, and strong

magnetic field generation. In addition to the forward accel- We consider a laser pulse propagating in homogeneous
eration, some PIC simulations also demonstrated that ele@lasma. It is circularly polarized with the vector potential
trons inside the channels are heated randomly to extremely,=(ay/2)[ & expkoXx—iwgt)+c.c] normalized by mc?/e

high temperaturegl4—16. The high-energy density of elec- with e0=(eyiiez)/\/§ anda, a real constant. There is a
trons inside the channels suppresses the electron blowout dispersion relation for this laser pulse
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2 2o, 2 allows for great simplification in calculating the dispersion
wp=koe+ pr dpf(p)/y, (1) relation, which finally reduces to a polynomial equation. But

one has to be reminded that this simplification by the water-

where w2=4mNoe?/m is the electron plasma frequency, Pag modelis brought at the price of losing the Landau damp-

f(p) is the electron distribution function normalized by the iNg, Which occurs in Gaussian-like distribution function. In

electron densityN,, p is the electron momentum normal- the waterbag moc_lel, the distribution function of the longitu-

ized bymc, and y=(1+aZ/2+p?)“2is the relativistic fac- dinal momentum is

tor. The dispersion relatiofl) is purely electromagnetic and _ N _

is valid eveﬁ if the plasma electrr)ons)i/nvolve net grift motion, f(p)=[H(p=pn)=H(p=p)1/AP, @

as shown in the Appendix. If there is a net current, for ex\yhereAp=p,—p,;, H(p) is the Heaviside step functiopy,

ample, inside a self-focusing channel of a laser beam, thergnqp, are the high and low boundaries in momentum space,

arises a self-generated quasistatic magnetic field. In the folespectively. The dispersion relation for the driving wave is

Iow_lng_ study in one-dlmensmn_al geometry, _thls static magq,y w(z):k(z)cz+w§<7—1>’ where (y~1=(Ap) tn(y

netic field will be neglected. This is justified if the plasma is

less than a certain widthV. Noting that the cyclotron fre-

quency of electrons in the self-generated magnetic field has\§aterbag distribution, which is symmetric about zero, i.e.,

maximum value in the edge of the plasma, thus the effect oPn=—P;=Pm>0. In this case, we havey,=(1+aj/?2

the magnetic field can be ignored if the maximum cyclotron+p2)*?, (y 1=(2pm) ““In[(1+v)/(1—v) =y, *, and

frequency we=(W/2c)(w?/ vo)(vo/c)<Min{w,/vg? wol,  the  temperature T=[dp(p®/y)f(p)=(2Ap) '[vp

wher?/zéo is the average drifting velocity of electrons. Since — 3 In(y+ p)]|zlh=(ym— Yoyl B2 with  y,=(1+a3/2)*2

“’p/7’01/2< wo, one obtains W<(c/vg)Wa with Wa  Erom the dielectric function, we obtain the dispersion rela-

=2¢y; 1wy the Alfven radius. The Alva radius is defined tjon for the plasma wave

by Wa=(Ia/mengo)*? with the Alfven current I,

=(mc’/e)(youo/c)~17(yovo/c) kA. Normally W=\, w?= w3 ymt K0 H= w3, (5)

with Ay the laser wavelength, we then obtain the condition to

neglect the magnetic fieldw?/ yowg<1/m(vo/c)?. In the ~ Wherev,=pp/yn is the maximum longitudinal velocity.

one-dimensional case and ignoring the magnetic field, it ha¥vhen  py<vya, T~ YaUi/3, one  obtains wi*(ws

been shown, starting with the Vlasov equation for electrons;+ 3T¢?k?)/y,.

that the dispersion relation for parametric instabilities can be For the SRS including the stimulated Raman backward

written as[5] scattering SRBS and the stimulated Raman forward scatter-
ing (SRFS, the plasma frequency and wave number can be

D,,D_;—(D,;+D_4)S=0, (2)  obtained by substituting the dispersion relation of the plasma

wave(5) into D_ ;=0 for three-wave resonance. Figur@)1

whereD . = w®~c?k?* 2(wwy—Cc?kk) With w andk the is a graphic version of the three-wave resonakige k+ ks

frequency and wave vector of the involved plasma wave, anédnd w,= w+ ws, where w, and kg are the frequency and

the coupling function wave number of the scattered waves, respectively. There are

, 5 ) two interacting points betweerw, and w=wy—[(Kg
_ aow { w

+p)|ﬁ|“. In the following in this section, we only consider a

b b 2 —k)?c?+ wj/ v, ]2 corresponding to SRFS and SRBS, re-

4 | c2k2e spectively. Figure (b) shows the wave vectdras a function
of the maximum velocity ,,. With the increase of the ther-
dpaf(p)/ap dpf(p) mal velocities, thek vector decreases for the SRBS branch
f 5 —f : (3 and increases for the SRFS branch. For given plasma densi-
Y (v—wlck) ties and laser intensities, there is an implicit cutoff thermal
. . . . velocity (aboutv ,,=0.6 for w,=0.4 anday=0.1) at which
with the_1d|e|ectr|c funct_|one=1—(w,2)/cz_k2)fd_p(?f/ap(v SRFS ya(nd SFBS merge with each other. Bc)Jth SRFS and
—w/ck) ~and the velocity = p/y. Equation(2) is actually  gppg gisappear whem, is larger than this cutoff thermal

the result of four-wave interactions. It can be obtained alterVelocity. This cutoff effect with the thermal velocity is simi-

natively by considering the distribution function of electrons 5, 15 the cutoff of SRS with the plasma density since the

as an assembly of cold electron beams with different veloCiasma frequency is a function of both the plasma density
ties. From this point of view, the dispersion relation can be;q the thermal velocity.

derived in a similar way as for a cold beam, as shown in the ity the symmetric waterbag distribution, the coupling
Appendix. The following study is devoted to solve the dis-¢,4ction is

persion relation2) in two different cases: one with a single

S

J dpdf(p)/dp
v(v— w/ck)

’)’3

hot electron distribution and another with both cold and hot a2 2
electron components. g=_ 20 . —p(k202+wr2,/ym—w2), ©6)
4ymya Pp

IIl. INSTABILITIES WITH HOT PLASMAS whereD, = w2~ %202 — w3l ym. With Eqs.(2) and(6), the

We solve the dispersion relatig¢fl) by assuming that the temporal growth rate for SRS and RMI can be found analyti-
electron distribution function is a constant within certain mo-cally at low plasma densities. We obtain the temporal growth
mentum space, which is called the waterbag model. Thisate[I'=Im(w)]
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mum velocities in the waterbag dlstrlbutlon f@ ag=0.1 and(b)

ao=3.0. The corresponding thin lines (b) are the real part ob.
FIG. 1. (a) Frequency vs wave-number diagram illustrating the Both I and w, are normalized byno andk by wo/c.

three-wave resonance of SR8) wave vector of SRS as a function o2

of the maximum velocity in the waterbag distribution of electrons!t shows that RMI occurs forkc<w,/[ ym(kjc? wg

for various densities and laser intensities. Héres normalized by —vm)]1’2~w (vom! va) Y2 i.e., it locates in a lowek-vector
wolc andv, by c. region than SRFS. Not|ce that the above formula cannot re-
s 1 duce to that given i3] when settingv,,=0. The RMI
I _ [ @pWo 3o 7 growth rate given there is obtained by some simple substitu-
SREST\ e | 432,102 @ tions using an expression derived for weakly relativistic in-
a m

tensitied 7,8]. However, some approximations used to derive
for the SRBS aroundkc~2wq/(1+v,) and w~w, that expression are no longer valid at high-light intensities.
=[ @3 ym+40dv 5/ (1+v;m) 212 whereyom=1/(1-v5)¥2  Here we find Eq(9) agrees with numerical results from the
For SRFS, both the Stokes and anti-Stokes waves have to lspersion relation.

considered. The growth rate is We solve the dispersion relatiq®) numerically[26] to-
) gether with Eq.(6). The resulting dispersion relation is a
r @y, & ) polynomial equation of degree eight. Figure 2 shows ex-
SRFS™ o 82 vom 82 vom’ amples of the growth rate as a function of the wave vector

when w,=0.1. Thek vectors for SRS shift from the cold
at ke~ w~wy(yom/va)"% Apparently, Egs.(7) and (8)  plasma theory in a way predicted in FiglbL The growth
show that thermal temperatures tend to reduce the instabilityates are reduced from the cold plasma theory when the ther-
growth rate. The results for the cold plash®a-5] are recov-  mal velocity is high as expected from Ed3) and (8). In
ered wherw,,=0. For RMI, assumingo=c?kky/wo+ dw,  Fig. 2(b), the real part of the plasma wave frequensy

we obtain [=Re(w)] is also plotted. For SRBSy, increases with the
5 5 temperatures; as a result, the frequency of the scattered wave

Swo= ——_ ke w k“c will decrease. For SRFS, since tkgector increases with the

23’m wi| w temperatures, correspondingly increases as well. Another

example is displayed in Fig. 3 fes,=0.4. As shown in Fig.
3(a), near the cutoff velocity at,,=0.6 whena,=0.1, SRFS
and SRBS merge ik space. Ifv,>0.6, both SRFS and
SRBS disappear and only the RMI is found with a low
9 growth rate, consistent with Fig.(H. Whenay=1.0, SRS

2 1/2

ag 1+ Ymye tk2c? w}

292 ym¥in 1= (Ko wf— v KeC 0
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10" ; ; where §(p) is the delta functionn; and n, represent the
— vmig-g (@) relative density ratio between the cold electron component
P z:;oj p and the hot tail, respectively, amg +n,=1. For this distri-
107 ¢ ”,/’" E bution function, there is a net current generating a static
i magnetic field. The estimated condition given in Sec. Il for
L o100 i neglecting this magnetic field applies here, which now re-
! quires (wp/wo)2< 1/3n,. Also for distribution function(10),
! the dispersion relation of the driving wave is3=k3c?
-4 — . — —
10 | +ap(y Y with (v H=n1/y,+no(Ap) " In[(m+pr)/(
! +p)]; the dielectric function is given by
|
10° sty
10 n,/ n,/
_ 4 2|M/7a 20T
=1yt o—ckop(w—ckop | 1Y
e %,=00  (b) 2/ 1 12112
06 T o X::S;S where vp=pp/yn, vI=Pi/y, Y= (1+a/2+pR)"

=(1+a3/2+p)? and y;'=Av/Ap with Av=v,—v,.

From Eqg.(11) with v;=0 one sees immediately that at high
wave numbers one has either a phase velocity nearly equal to
cvy or a frequency given by the cold plasma frequency
wp(N1/v,)Y2 At low wave numbers one has the usual total
plasma frequency with both hot and cold components, to-
gether with a curious low-frequency acousticlike wave re-
sulting from the hot electron screening of the cold plasma
oscillations. The coupling function is as follows:

202 | o
FIG. 3. Temporal growth rate fap,/wy=0.4 at various maxi- S= 4 212
mum velocities in the waterbag distribution f@ ay;=0.1 and(b) c’ke

n, c?k?
2 2

2
Ya @

ap=1.0. The corresponding thin lines {h) are the real part of. 2

B%th I' andw, are nFc))rmaIizged byoo aniik) by wg/c. P nz (Apkc—Ayw)ke |= w?—k*c?| Ny
YWYAp (o—ckvy)(w—cku)) 2 Ya®?

and RMI merge with each other. In this case, both the growth

rate and the unstable region kvector can be reduced sig- n;

nificantly by high temperatures, but there is no clear cutoff + yr(w—ckvp)(w—ckv,) J (12)

owing to the merging of SRS and RMI, as shown in Fig.
3(b). Thus, high temperatures are relatively easier to SUPwhere Ay=1y,—7,. In the following, we considew,=0

press SRS at low-light intensities than at high intensitiesgny corresponding to zero gap between cold electrons and
Similar to Fig. 2b), the real frequencw, increases with the e hot tail. We assume that>0, i.e., the hot tail copropa-

temperatures in this example. gates with the laser. Let us first consider the wave vector as
a function of the high velocity of the hot tail, . The three-
IV. INSTABILITIES WITH BOTH COLD AND HOT wave resonance constructed in the same way as in Fy. 1
ELECTRON COMPONENTS is illustrated in Flg 48.) There are six intersecting points

between €=0 and w=wo—[(Ko—k)%c?+wi(y H]"2
As mentioned in the Introduction, some PIC simulationssijpce both the frequency and wave vector of the plasma
show that part of the electrons are accelerated forward tq,qye only take positive values, there are actually three
very high energy by the intense lasers, while other parts ofatching points, two SRBS branches for the cold electron
the electrons remain at low energy level. As a result, theomponent and the hot tail, respectively, and a mixed SRFS
electron distribution appears to have two different thermakyanch located at lowe-vector value. Figure @) shows thek
temperatures: a relatively cold electron component and anzectors of these three branches as a function of the high
other with temperature up to several MeV. This kind of en-yelocity of the hot tail obtained from the three-wave reso-
ergy distribution may exist, for example, inside the relativis-5ce bye=0 andD_,=0. Thek vectors change with the
tic self-focusing channel of a powerful laser beam, where thyensity ration, /n,. If there is not a hot tail, it is just the cold
forward acceleration of electrons is often accompanied byasma result; if there is no cold plasma, the velocity depen-
cold electrons flowing inwards from surrounding regions dugjence looks similar to Fig.(b) for hot plasma with symmet-
to induced electrostatic fields. In this section, we make aic waterbag distribution; if both components exist, it is a
attempt to study the effect of such kinds of electron distribu-pixture of the last two cases, resulting in three branches of
tions on parametric instabilities. For simplicity, we considersrs. Both the frequency and wave vector of SRFS and the
the following distribution function hot-tail branch of SRBS change with the high velocity, while
those of the cold plasma branch of SRBS do not change with
f(p)=ny8(p)+n,[H(p—pn)—H(p—p)]/Ap, (10) it. Therefore, as the high velocity increases, the thermal cut-
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tion that the dielectric functiofil1) may also invlove the two
stream instability. To study the condition for this instability,
we notice that e=0 reduces to w3—kvpw?®—(ny/y,
+n2/yT)fu+thn1/ya=0, where &)=w/wp and k
=kc/w,. There are imaginary roots for this cubic equation
only when d=4k*n;/y,+1822[niny/ yayr+(N1/va
+ 1N,/ y1)2118— 212921+ 4(ny [ ya+ N,/ y1)3<0. This im-
plies that at least it must satistyin,/vyayr+(ny/vya
+1n,/y7)%/18—Nn2/292<0, or nyy,/n;yr<0.4. Actually,
the two stream instability occurs in more limited parameter
k regimes. Therefore, in the following we only present results
for parameters when this instability does not exist.
Examples of numerical results of the dispersion relation
7 are displayed in Fig. 5 for some plasma densities, light in-
tensities, and the high velocities of the hot tail. For a given
high velocity, Fig. %a) shows that there are actually two
~==—- ' ‘ ' SRBS branches, one for cold electrons and another for the
“~ (b) hot tail. As the high velocity of the hot tail increases, the
15| \ ] growth rate of the hot-tail branch of SRBS decreases; it also

shifts to a lowk vector and SRFS shifts to a hidtvector, as
- expected from Fig. ). On the other hand, both the growth
> 10t \\\- rate and thek vector of the cold plasma branch of SRBS do
n,=1.0,n,=0.0 \r not depend on the high velocity. As shown in Fig&)%nd
- :‘:g:g: :2:?:3 ! 5(b), the growth rate curves of the cold plasma brafindi-
' ? ] cated by RBS)Lfor v,=0.5 and 0.9 are overlapped. At the
7 same density leveln;~n,), the cold plasma branch nor-
; , e mally has a higher growth rate than the hot-tail branch. The
0.0 0.2 0.4 0.6 0.8 1.0 hot-tail branch may have a higher growth rate than the cold
v, plasma branch only when the electron density of the hot tail
is much higher than the cold plasma, as shown in Fig).5
The real frequencw, of the hot-tail branch, which increases
with the high velocity, is normally higher than the cold
plasma branch when;~n,. The thermal cutoff feature is
easily seen at relatively high plasma densities. Calculation
verifies that the hot-tail branch of SRBS merges with SRFS
in k-vector space at,=0.5 at low light intensities,=0.1
andn;=n,=0.5, for example. Ib, takes higher values, they
disappear and only the RFI and the cold plasma branch of
SRBS are left. This thermal cutoff feature with the hot tail is
just similar to a hot plasma shown in Fig.aB At high light
intensities as shown in Fig(&), owing to the merging of the
0.0 : : : : hot-tail branch of SRBS with SRFS and RFI, there is not a
o 02 04 06 08 1.0 clear cutoff hight velocity. The merged hybrid instability can
Vi be significantly suppressed when the hot tail extends to a

FIG. 4. (a) Frequency vs wave-number diagram illustrating theSUﬂEICIent high-energy level of a few M.eV. On the oth'e'r
three-wave resonance of SRS for electrons with both a cold com?@nd, the cold plasma branch of SRBS is not very sensitive
ponent and a hot tail, whetgsg andkgss correspond to the cold to the hlgh-en_ergy tail. Bu_t one can see the increase of its
and hot branches of SRBS, respectivély; wave vector of SRS as  9rowth rate with the hot-tail velocity, in contrast to the hot-

a function of the high velocity of the hot tail for different density tail branch of SRBS and SRFS. When the hot-tail velocity

ratio between the cold and hot components égr=0.1 anda,  approaches the velocity of light, the result for purely cold

=0.1; (c) wave vector of SRS as a function of the high velocity of plasma is recovered. Thus one expects that the cold plasma

the hot tail forw,=0.4 andn;=n,=0.5. Herek is normalized by ~ branch of SRBS will become dominant when the hot tail

wolc andv, by c. extends to very high energy, even if the electron density of
the cold component is much lower than the hot tail.

05

off effect found for the hot plasma in the last section appears
only for the hot tail branch of SRBS and SRFS, as shown in
Fig. 4(c).

In the casev,;=0, the resulting dispersion relation is a  We have studied the SRS and RMI instabilities of intense
polynomial equation of degree ten, which has to be solvedasers in plasma with relativistic hot electrons by use of the
numerically. Before presenting the results, we should menwaterbag model on the distribution function of electrons. In

V. SUMMARY AND DISCUSSIONS
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the case with a single hot electron distribution, the temporal

102 L - Z:;SjZ RBS1S) growth rates of the instabilities are given analytically for low
plasma densities and numerically for various parameters.
0 RBSZ\ | Due to high temperatures, the grovvth_ rate reduces signifi-
Ny cantly from the cold plasma results. High temperatures also
e shift the positions of the wave vectors and enhance the fre-
10 quencies of the excited plasma waves, and therefore reduce
the frequencies of the scattered SRFS and SRBS waves. At
10° low light intensities, there exists a cutoff thermal velocity for
a given plasma density, beyond which SRS disappears. At
& high light intensities, the SRS and RMI merge with each
18 10° other. As a result, there is not a clear cutoff thermal velocity.
K But high temperatures can still significantly suppress the
. ; ; : merged hybrid instability by reducing the growth rate and
0 g — W05 (009) (408 ©) suppressing the L_Jnstable region in wave-vector space.
=09 ' In the case with both a cold electron component and a
10" ¢ sl high-energy tail copropagating with the lasers, there appear a
/ SRFS branch and two SRBS branches; one corresponds to
- 10 i 1 the cold plasma component and another to the hot tail. The
e effects of the hot-tail velocity on the hot-tail branch of SRBS
10° A ! \ 1 and the SRFS are similar to a high temperature, which leads
: i i A \ to the reduced growth rate and/or the cutoff of SRS above
10* g ] RESS certain velocity of the hot tail, while the cold plasma branch
remains insensitive to the hot tail. When the hot tail extends
10° . l:c - to sufficiently high energy so that the corresponding SRBS
10 10 and SRFS are significantly suppressed, the behavior of laser
k pulse propagation will be dominated by the cold electron
0.08 s ‘ ) component in the present one-dimensional calculation.
..... v-0.9 The calculation in Sec. IV for distributions with both cold
0.06 | ] and hot components of electrons demonstrates that cold elec-
f trons even at much smaller densities than hot electrons can
play a dominant role in the excitation of parametric instabili-
~ 0.04 | ties. In real experiments, the electron distributions may look
much smoother than used in this paper. In this situation, it is
not clear if there would arise distinct cold and hot unstable
0.02 modes at the same time. This is the object of future work by
using a smooth distribution, which would also include Lan-
0.00 dau damping and additional instability such as the stimulated
0. Compton scattering27]. In addition, we note that present
work is valid in one-dimensional geometry. Two-
dimensional geometry would allow for other instabilities
06 such as filamentation instability of both electron beams and
laser beams and Weibel instability of electron beams, which
are coupled with each other, and are more complicated than
the present one-dimensional parametric instabilities. But the
g 04 waterbag model may also serve as a tool to simplify the
— calculation without losing the main physics.
0.2
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FIG. 5. Temporal growth rate at various high velocities of the APPENDIX: DISPERSION RELATIONS EQS. (1) AND (2)

hot tail. (8) wp/we=0.1, 89=0.1, andn;=n,=0.5; (b) w,/wo The dispersion relation of a relativistic plane wave in
=0.1, 29=3.0, andn;=n,=0.5; () w,/we=0.1, 8,=3.0, 1 ¢old, not moving plasma is well knowi28]. Here, we derive
=0.1, andn;=0.9; (d) wp/wo=0.4, 39=1.0, andn;=n,=0.5.  the dispersion relation in plasma with components of elec-
The corresponding thin lines ifb) and (d) are the real part ob.  yons moving with different velocities. Instead of starting
BothI' anda, are normalized by, andk by wo/c. Notice thatthe i the Viasov equation for electrons, we consider the dis-

cold branches of SRBS for,=0.5 and 0.9indicated by RBSLare g, tion function of electrons as an assembly of cold elec-
overlapped in@ and (b).
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tron beams with different velocities and start with the follow- One can always find appropriate constant value oo that
ing sets of equations describing both the laser fields and;(n;—n;o)=0, i.e.,
electron motions:

1 d°a

14 w? > [1-Bvjo—(B—vjo) ¢j/\d*+ v52(1+a%2)]n;p=0.
—2——V2a=———V¢> _52 i i 10/ 9] i i

. (A

;<|3

sa In the case of a single-electron beam, for example, dropping

—2=—+cV(p—y)+cvxVx(pj—a), (A2) the subscriptj, we find ¢=(1-Bvq)yayo+rK, px

ot at =¥aYoVo and y=1vy.y,, Where y,=(1+a%2)"? and y,
=(1—v§)‘1’2. In this case, there is no charge separation.

an,; n;p; Therefore the following dispersion relation is readily ob-
an; (MiPs) _ erefore the following dispersion relation is readily o
at ey ( Y ) 0. (A3) tained from Eq(A10):
0)2
v2¢zc_§(; ”J‘1>' (Ad) 0§=wpBl (=12 (njly)), (A12)
J

wherea and ¢ are, respectively, the vector and scalar poten-

2 2 . . . i i -
tials normalized bymczle p; is the electron momentum which i justwy=ksc cF wpZ;(n; /) or Eq. (1). This dis

: . . persion relation is purely electromagnetic and may occur
normalized bymc, j=1.2, ... denotes different cold beams only when the electron beams interact with a semi-infinite

of elec_trons moving at different velocmepj is the density laser pulse with sufficient long leading front, thereby avoid-
of the j component of electrons normalized by the unper-.

) 2 o ing plasma wave excitation.
turbed densitNo=2;No;, andwp=47Noe/m is the elec- Next, we derive the dispersion relatidg). We perturb
tron plasma frequencynJ Noj/Ng. The Coloumb gauge

V.a=0 has been used. We first derive the dispersion relaEds- (A1)—(A4) with the perturbation quantities, p;, ;.

tion (2). and ¢, and expand them in the form ofg
In homogeneous plasmas, assuming the plane Wave2+:,x§meX|:{i(0+m60)], with p=Kkg-X— wot and =k
propagates with the comoving coordinatet—x/u, we ob- - x— wt. For one-dimensional perturbation where the pertur-
tain from Eq.(A2) bation wave vector is along the propagation direction of the
driving wave, i.e..k=ke,, following routine calculations,
PjL=a (A5)  we obtain a dispersion relation
Bpj xt o= v;=K;j, (AB)

. , . Dm+lefl_(Dm+l+Dmfl)w32 djm=0, (AL3)
whereK;= Bpjo— ¥jo is a constant depending on the initial i

conditions of electron componeptand 8= u/c. From these

constants of integration, one finds Whereszwfn—czkfn—ngj(nj 191), ©;.m=om—Cknvjo,
vjo=Pjo! YV}, om=w+Mwg, Kn=k+mkye,, and

2 21,2
njjc kmF
3| 2 tgm

j,m

Pix= Vsl —Boi+ b +y; (1+a%2)], (A7)

Y=yl — it BVG + v (1+a%2)],  (AB) d =

wherey,=(8%-1)"?and ¢;= ¢—K;. From Eq.(A3), one

Yi “’5 n
1+ 22 | 5= Sl
€m T\ ofn Y

obtains Om
- (A14)
—v; J,m
nj:unjo. (Ag)
B—vjx .
with =1-3; (w n£)/(w] m7]7]0) 7’]0 1/(1- U]O)
Notice that here the zero subscripts suchpas ¥jo. vjo. —'y2/'ya, ya (1+a2/2)1’ m=1—omnvjo/Cky. Here,

andn;, denote the corresponding quantities before the mterafter Eq.(A13), the zero subscrlpts such pg, vjo, andvjg
action with the laser. Substituting these into EGS1) and  denote the unperturbed value in the presence of the laser.

(Ad), One notices tha¢,,=0 can be used to study the plasma wave
with multicomponents of electrons moving with different ve-
iza: B 3 22 n; B (9_2¢ locities [25]. In Eq_. (A13), m can be an arbi_trary integer. It_

972 21 521 972 ' shows that there is no coupling between different harmonics

when the driving wave is circularly polarized. Since there is
(A10) . o L
no harmonics generation in the driving wave, one should
2 takem=0 in this dispersion relation. Thus, one obtains Eq.
. ¢=,32w§2 (nj—nNjo). (A11) (2 W|th.the coupling functiorS= w2 d; . The latter can
i be rewritten as
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T
D nj 12,0 (0?—cA?) S

2
) nj
4 2 4
J 'yJ (l)j’o J

3 2|7
Yi®j0

(A15)

agwg
4

|

Czkzwg(

€0
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This is an extension to the dispersion for SRS and RMI as
given in Refs[3-5] to include the drift motion of electrons.
If substituting the sum with integral, one can verify that Eq.
(A15) is equivalent to Eq(3).
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